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. 1. Preference and Choice

> There are two distinct approaches to modeling individual choice behavior.

3 The first one treats the decision makers’ tastes, as summarized in their Preference
4+ Relation, as the primitive characteristic of the individual.
5 The second approach treats the individual’s choice behavior as the primitive feature and

6 proceeds by making assumptions directly concerning this behavior. A central assumption
7 in this approach is the Weak Axiom of Revealed Preference.

s 1.1. Preference Relations

o In the preference-based approach, the objectives of the decision maker are summarized in
a preference relation, which denote by »=. > is a binary relation on the set of alternatives
u X, allowing the comparison of pairs of alternatives z,y € X.

-
o

12 Definition 1

13 (1) The Prefence Relation > is defined as:

x>y < xis at least as good as y

14 (2) The Strict Prefence Relation > is defined as:

r-ysr-yAyta

15 (3) The Indifference Relation ~ is defined as:

r~ySTmyNy -
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Definition 2 The preference relation > is Rational if it is
(1) Complete: Vz,y € X,z = yVy = x.
(2) Transitive: Vz,y,z € X,z = yAy =z =1z = 2.
Theorem 3 If > is rational, then
(1) > is irreflective (Vz € X,z % z) and transitive.

(2) ~ is reflective (Vo € X,z ~ x), transitive and symmetric (Vz,y € X,z ~y <y ~ z).

Definition 4 Utility Functions

A Utility Function u(z) assigns a numerical value to each element in X, ranking the
elmenst fo X in acordance with the individual’s proferences. u : X — R is a utility function
representing preference relation > if,

Vo,y € X,w =y < u(z) = u(y)

The utility function that represents apreference relation is not unique. it is only the ranking
of alternatives that matters. The preference relation associated with a utility function is
an Ordinal property (invariant for any strictly increasing transformation). The numerical
values associated with the alternatives in X, and hence the magnitude of any differences in
the utility measure between alternatives, are Cardinal properties (does not preserve under
all strictly increasing transformation).

Theorem 5 A preference relation 7 can be represented by a utility function only if it is
rational.

1.2. Choice Rules

In the second approach to the theory of decision making, choice behavior is represented by
means of a choice structure.

Definition 6 Choice Structure
A Choice Structure (%, C(-)) consists of two ingredients:

(1) % is a family (a set) of nonempty subsets of X (% C 2X). The elements B € % are
budget sets.

(2) C(-) is a choice rule that assigns a nonempty set of chosen elements C(B) C B for
every budget set B € . When C(B) contains a single element, that element is the
individual’s choice from among the alternatives in B. When C(B) contains multiple
elements, the elements of C(B) are the acceptable alternatives in B that the decision
maker might choose.
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s Definition 7 The Weak Axiom of Revealed Preference
s The choice structure (%’, C’()) satisfies The Weak Axiom of Revealed Preference if
a8 the following property holds:

If 3B € # with x,y € B s.t. x € C(B),
then VB’ € # with 2,y € B and y € C(B’), we have x € C(B’).

20 The weak axiom of revealed preference says that if x is ever chosen when y is available,
so then there can be no budget set containing both alternatives for which y is chosen and z is
51 not. If x is revealed at least as good as y, then y cannot be revealed preferred to x.

Definition (Houthaker’s Axiom of Revealed Preferences)

Revealed preference choice rule Cr: 2X — 2X satisfies HARP if whenever
Va, b€ X and VA, B C X,

o {a,b} C Aand a € Cg(A); and
o {a,b} C B and b € Cr(B),
then we must have a € Cg(B) (and b € Cg(A)).

Figure 1: HARP.

Definition (Weak Axiom of Revealed Preferences)

Revealed preferences Cg: B — 2X defined only for choice sets B C 2X
satisfies WARP if whenever Va, b € X and VA, B € B,

o {a,b} C Aand ae Cg(A); and
o {a,b} C Band be Cr(B),
then we must have a € Cgr(B) (and b € Cr(A)).

Figure 2: WARP.

52 HARP is WARP with all possible choice sets (B = 2%). HARP is necessary and sufficient
53 for rationalizability. WARP is necessary but not sufficient for rationalizability.

Consider two different budget sets: {a, b} and {a, b, c}. Suppose we know
revealed preference choice rules: Cg({a, b}) and Cr({a, b, c}). We ask:
"Is it possible to rationalize this Cg(-)?"
o Cr({a, b}) = {a} and Cr({a b,c}) ={c}
o Yes:c>a>b
Cr({a b}) = {a} and Cr({a,b,c}) = {a}
o Yes: a> b,a> c, b?c
Cr({a, b}) = {a b} and Cr({a, b, c}) = {c}
o Yes: c>an~b
Cr({a b}) = {@} and Cr({a, b, c}) = {c}
o No: see Theorem 1
Cr({a b}) = {b} and Cr({a b, c}) = {a}
o No: Contradiction
Cr({a, b}) = {a} and Cr({a, b,c}) = {b.c}

o No: Contradiction
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Violation of HARP

/

WARP is not sufficient for rationalizability

Consider Z‘R: B — 2{ab:c} defined for choice sets
B={{ab} {bc}{ca}} C 2fabic} with:

Cr ({a.b}) = {a} (ie, a>cb),

Cr ({b.c}) = {b} (i.e.. b>cc),

Cr ({c.a}) ={c} (e, c >c a).

Cr(-) satisfies WARP, but is not rationalizable (violates transitivity).

Bl o ﬁﬂﬁg_ﬁ&dmﬂg_mﬂiz}%&m > m]a%ﬁa[&ﬂ Anditert ML&JL&;}!@M)_
?L' %iz]’i-xé—?ﬁ(ik%’ L ’iﬂﬁ%ﬁm ﬁ'ﬁ* IX"% »X}/\ lx}h;x*‘__? ,xi >:I/Xh

y X ‘
Bl RN ; N
T \\\:@“Wﬁm spollote b

"*yf-x%\w K=l i \\\x <
*I — \ X1 K
WARP weak axlwoj}even’”ecl me‘“ 3 QWP e ;>
Bl il A 1A # X |UARP T4 Tl m@mgeﬁ
SHRP stag » SRRIALRA
XL L (v a4 N (AR AR A > SIRP  BiThrgiedts.  BuRprdRsatp
s« Theorem 8 Suppose >is complete and transitive and B is finite and non-empty, then
55 C (B , t) % .

If B is infinite, then C(B, =) might be empty.

Let X = [0,00) and BC X is B={1,2,3
(x> yifx>y), then C(B,>) =

,...}. If you prefer more to less

Let B =
C(B,») =

[0,1). Again, if you prefer more to less (x > y if x > y), then

Figure 3: E.g.

1.3. The Relationship between Preference Relations and Choice Rules

Proposition 9 Suppose that - is a rational preference relation. Then the choice structure
ss  generated by =, (%#,C*(-,22)) satlsﬁes the weak axiom.
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Definition 10 Given a choice structure (%, C(-)), we say that the rational preference re-
lation 7 rationalizes C(-) relative to A if

¢(B)=C"(B,2)
for all B € 4, that is, if 77 generates the choice structure (£, C(-)).

Proposition 11 Arrow Theorem
If (#,C(-)) is a choice structure such that

1. the weak axiom is satisfied,
2. % includes all subsets of X of up to three elements,

then there is a rational preference relation - that rationalizes C(-) relative to %; that is,
C(B) = C*(B, ), for all B € #. Furthermore, this rational preference relation is the only
preference relation that does.

1.4. Properties of Preferences

Definition (continuous preference relation)

A preference relation > is continuous iff for all x € X, the upper and lower
contour sets of x

UCS(x) ={¢ e X: ¢ = x}

LCS(x) = {¢ € X: x = ¢}

are both closed sets.

Example (lexicographic preferences)

Preferences over [0, 1]> € R? with (x1,y1) = (X0, y2) iff x1 > xo, or
x1 =x and y1 > y».

Example (lexicographic preferences are not continuous)

For lexicographic preferences, UCS and LCS are not closed.

gt
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Definition (continuous preference relation)

A preference relation > on X is continuous iff for any sequence of pairs of
elements {(xn, yn) } oy With X, >= y, for all n,

lim x, = lim y,.
n—oo n—oo

Example (lexicographic preferences are not continuous)

Consider a sequence x, = (% 0) and y, = (0,1). For every n, we have
Xp > Yn. But nILmQQy,, =(0,1) > (0,0) = nliﬂmwx,,.

70 Definition 12 Monotonicity
71 = satisfies Monotonicity at bundle y iff Vx € X:

72 (1) Monotone: Vk,zi >y = x = y.
73 (2) Strictly Monotone: Vk,zx > yr = x > y.

72 (3) Strongly Monotone: Vk,xp > ypr Ax #y = x = y.

3(3)
A
postive
slope /»
/A\ //
\\\ //’\\ /
negativa \/ \\/
slepe and N
bends
uoward
16.jpg

o Not strictly monotone

J/ Woise Neqatively
74 sloped

17.jpg

@ These preferences satisfy strict monotonicity.

o Indifference curves are negatively sloped.
75 Definition 13 Local Non-Satiation

% = is Locally Non-satiated iff Va,Ve > 0,3y s.t. ||z — y|| < € (Jy € Be(z)) and y > =.
77 If x is strictly monotone, then it is locally non-satiated.

1shaded

14.jog
@ Local non-satiation is not satisfied on the left.
@ Local non-satiation is satisfied on the right.
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7 Definition 14 Convex Preferences
79 (1) = is Convex iff
yrxzAhz=z=VAe (0,1, y+(1-N)z=x
so  (2) = is Convex iff the upper contour set of any z is a convex set.
st (3) > is Strictly Convex iff
yrmzAzr-z=YAe (0,1),\y+(1—-Nz >z

g2 (4) Convex preferences capture the idea that people like diversity. Convexity prohibits
83 the agent from preferring extremes in consumption.

Convex preferences (but not

. Strictly convex preferences
strictly)

X

x,‘
{reRi:yzx}
" Ya

\

.\uy +(1~-a)

-

Xy

2

o > is (strictly) convex iff u(-) is (strictly) quasiconcave
@ Why not concave? Compare concave and quasiconcave u (-) (on
definitions, see my math slides, p. 149-164 & p. 198-209).

11
u(x1, %) = x'x (concave): Indifference curves:

3/2,3/2
v(x1,x2)=x1/ x2/ )
(quasiconcave): Indifference curves:

7

s Concavity is not preserved under monotonic transformations.
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ss  Definition 15 Equivalent Utility Functions

o To check whether two utility functions v (x,y) and v (x, y) represent
the same preferences, one might look at a marginal rate of
substitution:

v du/ox _ ov/ox
MRSy = du/dy ~ ov/dy

= MRS,

o If MRS! , # MRSy, then u(x,y) and v (x, y) represent different

preferences.

Property of = Property of u ()

— Monotone — Nondecreasing
(x>2y=x2xy) (x=y=u(x)=u(y))

— Strictly monotone — Increasing
(x>y=x>y) (x>y=u(x)>u(y))

— Locally non-satiated — Has no local maxima in X

— Convex — Quasiconcave

— Strictly convex — Strictly quasiconcave

ss Definition 16 Homotheticity
g7 >~ is homothetic iff Vz,y and YA > 0:

TZyEs A=Ay

88 @ Continuous, strictly

monotone > is homothetic

iff it can be represented by a )
utility function that is
homogeneous of degree one R
(h. of d. 1), i.e.,
u(Ax) = Au(x) for all \/ 2
A>0.

@ Homothetic > can also be

2x

represented by utility Xy
function that isn't h.of d. 1.

so Definition 17 Separability
o Preferences over x do not depend on y, i.e. Vo,2' € X and Vyi,y2 € Y

(xlayl) = (lB,yl) < (.Q?/,yg) = (:B:y?)
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u(x1,x,x3,xa) = U (v (x1,%),x3,x). The preferences are separable on
the commodity group {1, 2}.

. _Ou/oxi _ [oU/ov]-[ov/dxi] ov/dxi _
MRS = 3u/x ~ [0UJv]-[ovidn] — avidm — | 00%)

and it does not depend on the commodity group {3,4}. Note that
MRSy, ,, is
MRSY  — du/dxs AU (v (x1,x2),x3,%) /9x3

X3,%4 u/oxa = aU(V (X1,X2).X3,X4) Tk = f(Xl,XQ.X3v)<4)

An example is

u(xi, X2, X3, Xa) = /X120 - (X3 Xa) +X§ +x§.

Definition 18 Quasi-linearity
o2 The following u(x1,x2) is linear in x; and non-linear in xs:

u(zy, xe) = x1 + v(x2)

Each indifference curve is a horizontally shifted copy of the others.

WAL
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« 2. Classical Demand Theory

95

96

97

98

99

101

102

2.1. The Utility Maximization Problem

@ The set of optimal choices:
x(p, w) = ar max  u(x
(p,w) I (x)

e, e, v

={x€RL: p-x < wand u(x) = v(p,w)}

e Solution: x(p, w) — a Marshalian (Walrasian) demand;

o v(p, w) is called an indirect utility function (as opposed to direct
utility u).
e v(p, w) is a value function.

To recover the choice correspondence from the value function we typically
apply an Envelope Theorem.

o Value function (indirect utility): v(p, w) = sup, u(x) s.t. px < w.
o Lagrangian: £ = u(x)+A(w — Y _pixi) + p - x.
i

By the Envelope Theorem, we have

dv oL
1) S oW = A,
av 9L
a—pi = a_p’ = —AX,’.

We can combine 1) and 2), dividing the second by the first.

Roy's identity

@ Roy's identity allows us to recover the Marshallian demand x from the
indirect utility v.

Proposition 19 If p > 0 and wu(-) is continuous, then the utility maximization problem
has a solution.

Proposition 20 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation 7~ defined on a consumption set X = ]Ri. Then the Wal-
rasian demand correspondence x(p,w) possesses the following properties:

1. Homogeneity of degree zero in (p,w): x(ap,aw) = x(p,w) for any p,w and scalar .

2. Walras’ law: p -z = w for all x € z(p,w).

10
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3. Conwvezity/uniqueness: If 7 is convex, so that u(-) is quasiconcave, then z(p,w) is a
convex set. Moreover, if - is strictly convez, so that u(-) is strictly quasiconcave, then
x(p,w) consists of a single element.

Proposition 21 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation 7~ defined on the consumption set X = RJLF. The indirect
utility function v(p, w) is

1. Homogeneous of degree zero.
2. Strictly increasing in w and nonincreasing in p, for and /.
3. Quasiconvex; that is, the set {(p,w) : v(p,w) < v} is convex for any .

4. Continuous in p and w.

2.2. The Expenditure Minimization Problem

Expenditure Minimization Problem

min p - x such that u(x) > @.
x>0

i.e., find the cheapest bundle at price p that yields utility at least &.

@ The solution to the EMP is

h(p, ) = ar min - X,
(P ) ng]R'_;_:u(x)Zﬂp

where h(p, 1) denotes a Hicksian (compensated) demand
correspondence, h : IR” x R =2 R". This is a decision function.
@ The minimized value of expenditure is

e(p, o) = inf - X,
(P ) xe]R’_}_:u(x)Zﬁp

where e(p, ) is an expenditure function. This is a value function.

Proposition 22 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation 7~ defined on the consumption set X = ]Ri and that the
price vector is p > 0. We have

1. If * is optimal in the UMP when wealth is w > 0, then z* is optimal in the EMP
when the required utility level is u(z*). Moreover, the minimized expenditure level in
this EMP is exactly w.

2. If x* is optimal in the EMP when the required utility level is u > w(0), then z* is
optimal in the UMP when wealth is p - *. Moreover, the maximized utility level in
this UMP is exactly u.

Proposition 23 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation 7~ defined on the consumption set X = Ri. Then the
expenditure function e(p, u) is

11
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—

. Homogeneous of degree one in p.

2. Strictly increasing in u and nondecreasing in p, for any £.
3. Concave in p.

4. Continuous in p and wu.

Proposition 24 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation - defined on the consumption set X = Ri. Then for any
p > 0, the Hicksian demand correspondence h(p,u) possesses the following properties:

1. Homogeneity of degree zero in p: h(ap,u) = h(p,u) for any p,u and a > 0.
2. No excess utility: For any = € h(p,u),u(x) = u.

3. Convexity/uniqueness: If 7 is convex, then h(p,u) is a convex set; and if - is strictly
convex, so that u(-) is strictly quasiconcave, then there is a unique element in h(p,u).

Proposition 25 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated preference relation 77 and that h(p,u) consists of a single element for all p > 0.
Then the Hicksian demand function h(p, u) satisfies the compensated law of demand: For
all p’ and p”,

" =p') - [h@",u) = h(p,u)] <0.

2.3. Duality

Definition 26 For any nonempty closed set K C RE, the support function of K is defined
for any p € R to be

pr(p) =inf{p-z:z € K}.
Proposition 27 (The Duality Theorem) Let K be a nonempty closed set, and let pux(+)

be its support function. Then there is a unique z € K such that p-Z = pux(p) if and only
if ug(+) is differentiable at p. Moreover, in this case,

Vuk(p) = Z.

2.4. Relationships between Demand, Indirect Utility, and Expenditure
Functions

 Dhiraddt x=fipp > AR 5] > S s =fos > dbief o
ek 600 | mea_p |

st pX=m st utkd
+ fﬁft & | fi%
DR Rk | AUV PR, LT
h
XiAP, ™) T pAm=e.rpu) 0l 2000)
PRAEEA AT Davamela] — [RA
A l?,m):-g%/, /2 NZ3) ey g)ﬁ PX=m

s age | e EYN 73
u=1repm | gL th= e (P

12
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Proposition 28 Suppose that u(-) is a continuous utility function representing a locally
nonsatiated and strictly convex preference relation >~ defined on the consumption set X =
RJLF. For all p and u, the Hicksian demand h(p, u) is the derivative vector of the expenditure
function with respect to prices:

h(p,u) = Vpe(p,u).
That is, he(p,u) = de(p,u)/Ope for all ¢ =1,... L.

Proposition 29 (Roy’s Identity) Suppose that u(-) is a continuous utility function rep-
resenting a locally nonsatiated and strictly convex preference relation =~ defined on the
consumption set X = Rf_. Suppose also that the indirect utility function is differentiable
at (p,w) > 0. Then

Proposition 30 (The Slutsky Equation) Suppose that u(-) is a continuous utility func-
tion representing a locally nonsatiated and strictly convex preference relation - defined on
the consumption set X = RE. Then for all (p,w), and u = v(p, w), we have

h
Ohelp,w) _ welpw) | 2epw) oy o all 0,k
Opg ygs ow

Slutsky equation

Dx(pw) _ o(pulclp ) _dxow)

total effect substitution effect wealth effect

9p; ap; ow

for all i and j.

o To see the own-price effect on the Marshallian demand, set i = j in
the Slutsky equation:

ax;(p, w) _ oh; (p,v(p, w)) _ oxi(p, w
ow

)
dpi pi i(p.w)

e p; | from p; to pi:
@ Substitution effect (SE): the consumer is encouraged to consume
more of good i (h; T from x; (p, w) = h; (p, u) to h; (p/, u)).
o Always 3 <0.

@ Wealth effect (WE): the consumer feels richer, which affects x; in
some (indeterminate) way (x; T or | from h; (p, u) to x; (p, u')).

o Sign of gim; depends on u (preferences).

13
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— Example: p1 |

— Substitution effect: movement from x to h (p/, u);
— Wealth effect: movement from h (p', ) to x';

— Total effect: movement from x to x’.

Goonz
Total
effect
S Income
/4 effect
Substitution
effect
Goon1
moX ik, %) .

- Mkl g %%ﬁl LTM)») AuB stD Xt hde=m 21 4, (P )

1 rmﬂ ut’x.,’Y»)
Tisink ‘Th IDEIRS :f1>. AR =M BB K (p0, )
1
paxu®” =
T Lpit (r-pa Pt m, P Ahn M- = X Ppy s1. putplice! il iy, P

SE: sk’ X 1p/ e Yo PPy 1E: N :«.f]x.?,.m—m 7 3. o)

SE LE

12 2.5. Marshallian Response to Changes in Wealth

Definition (Normal good)

Good i is a normal good if x;(p, w) is increasing in w (i.e., ax:( ) S 0).

Definition (Inferior good)

Good i is an inferior good if x;(p, w) is decreasing in w (i.e., M < 0).

o Engel curve = wealth expansion path (how x moves with w).

both goods are normal good 1 is inferior

GooD 2 @ooD 2

Gooo 1 GooD1

At least one of the goods should be normal (the agent should spend his
wealth on something).

14
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13 2.6. Marshallian Response to Changes in Own Price

Definition (Regular good)
Good i is a regular good if x;(p, w) is decreasing in p; (i.e., % < 0).

Definition (Giffen good)

Good i is a Giffen good if x;(p, w) is increasing in p; (i.e., 2 3o

2ifp.4) > 0).

Offer curve = price expansion path (how x moves with p).

good 1 is regular good 1 is Giffen
GOOD 2 < GOoD2

Offer curve

Offer curve

GOOD 1

GooD 1 N

The law of demand holds for x; if the good is regular.

<0
on:~ ax
. . i Xi .
o If a good is normal, %x,- >0= a—'_—a—'x,- = 3—:’[ < 0= The
N p’, \.‘f/,./
>0

<0

good is regular.
ox; oh; . .
L = ! 9x; = g—x’x,- <0=

o If dis Giffen, 29 > 0, = — — 200 _ .
d good Is ulrren ap,' ap, apl awx’

The good is inferior.
s 2.7. Marshallian Response to Changes in Other Goods’ Price

Definition (Gross substitute)
Good i is a gross substitute for good j if x;(p, w) is increasing in p; (i.e.,

ax;(p,w
% > 0).

Definition (Gross complement)
Good i is a gross complement for good j if x;(p, w) is decreasing in p;

(i.e., 24P ),

ap;

Gross substitutability/complementarity is not necessarily symmetric.

15
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s 2.8. Hicksian Response to Changes in Other Goods’ Price

Definition (Substitute)

Good i is a substitute for good j if h;(p, i) is increasing in pj (i.e.,
utpr)) > ).

Definition (Complement)

Good i is a complement for good j if hj(p, &) is decreasing in p; (i.e.,

oh;(p,
few) < 0).

Substitutability/complementarity is symmetric.

@ If goods i, j are substitutes, g—g > 0, and good i is inferior, g—f; <0,
9x; ah,' aX,'

ax;
= = 1 - Ty = s
apj aP_/ aW J apj
>0 <0

= The good i is a gross substitute for good j.

@ If goods i, j are complements, g—gf < 0, and good i is normal, % > 0,
J
ax; % _ % . 9x;
% Jp; ow Y = o < 0
<0 >0

= The good i is a gross complement for good j.

16
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w 3. Uncertainty

1wz 3.1. Expected Utility Theory

16s  Definition 31 Von Neumann-Morgenstern Expected Utility Model

10 (1) X = set of all possible prizes (outcomes or consequences), X = {z1,...,z,}. X can
170 take many forms (e.g.,consumption bundles, monetary payoffs).

m (2) |X] =n < oo. There must be a best outcome and a worst outcome.

2 (3) A Simple Lottery is a probability distribution p = (p1,...,pn) € R} over prizes,
173 where p; is the probability that outcome x; occurs. A simple lottery can be represented
174 geometrically in the (n — 1) dimensional simplex:

A(X) = {pERi:Zpi: 1}

Py

L=(p,psps)

L=(pypyps)

(a) (b)

Figure 4: Simple lottery.

175 A simple lottery L is a list L = (p1,...,pn) with p, > 0 for all n and ) p, =1,
176 where p,, is interpreted as the probability of outcome n occurring.

177 (4) A Compound Lottery allows the outcomes of a lottery themselves to be simple
178 lotteries.

Figure 5: Compound lottery.
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Given K simple lotteries Ly = (pf,...,p%), k = 1,..., K, and probabilities ay > 0
with ), oy = 1, the compound lottery (L1, ..., Li; a1, ..., o) is the risky alternative
that yields the simple lottery L; with probability ay for Kk =1,..., K.

Definition 32 Preferences Over Lotteries
(1) A rational decision-maker has preferences over outcomes in X'.

(2) We consider preferences over lotteries A(X). From now on, > refers to preferences
over lotteries, not outcomes.

o A.1l. > is rational (complete and transitive) on the set of all lotteries over the set of
outcomes X.

e A.2. > is continuous.

o A.3. > satisfies independence axiom.

Definition 33 Continuity of Preferences
A preference relation = over A(X) is continuous iff for any pg, pas, and pr, € X such that
PH = PMm = DL, there exists some « € [0, 1] such that:

apy + (1 —a)pr ~ pu

i.e., if you move slightly away (say in the direction of the worst lottery py) from one lottery
which you prefer py over a second one pys , at some point, you will be indifferent to the
second one.

Definition 34 Independence Axiom
A preference relation = over A(X) satisfies independence iff for any p,p’, and p,, € A(X)
and any « € [0, 1], we have

/

pzp & ap+(l—a)pm = ap’ + (1 —a)pm
i.e., if p is at least as good as p’, then the possibility of p is at least as good as the possibility
of p/, as long as the other possibility is the same (a (1 — «) chance of p,, ) in both cases.

Similar relationships hold for > and ~.

Let X = {1 beer, 1 cake, 1 apple}.

— Suppose you prefer a beer for sure to a cake for sure, i.e., p = (1,0,0)
and p' = (0,1,0) and p > p'.

— Then, you will prefer a beer with probability % and an apple with
probability % to a cake with probability %and an apple with probability %
no matter how you feel about the apple:

1 1 1 1
5 (1.0.0)+5-(0,0,1) >~ >-(0.1,0)+ 5 - (0,0,1),

here, pm = (0,0, 1).

Figure 6: E.g.
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Definition 35 Von Neumann-Morgenstern Utility Functions
A utility function U : A(X) — R is a VNM utility function (equivalently, has an expected
utility form) iff there exist numbers ug, ..., u, € R such that for every p € A(X),

Ulp) =Y pivi=p- 4
=1

where U = (uy,...,u,) € R™

The utility function U : . — R has an expected utility form if there is an assignment of num-
bers (u1,...,uy) to the N outcomes such that for every simple lottery L = (p1,...,pn) € L
we have

U(L) = uip1 + - - + unpn.
A utility function U : £ — R with the expected utility form is called a von Neumann-
Morgenstern (v.N-M) expected utility function.

Theorem 36 Linearity of VNM Utility Functions
A utility function U : A(X) — R is a VNM utility function iff it is linear, i.e.,it satisfies:

Ulap + (1 —a)p’) = aU(p) + (1 = )U(p')

for all p, p’ € A(X), and « € [0,1].

A utility function U : .Z — R has an expected utility form if and only if it is linear, that
is, if and only if it satisfies the property that

K K
U (Z aksz> = apU(Lg)
=1 P

for any K lotteries Ly € £, k=1,..., K, and probabilities (c,...,ax) >0,>, ar = 1.

Theorem 37 Expected Utility Theorem

Suppose that the rational preference relation 7~ on the space of lotteries £ satisfies the
continuity and independence axioms. Then 77 admits a utility representation of the expected
utility form. That is, we can assign a number u,, to each outcome n =1,..., N in such a
manner that for any two lotteries L = (p1,...,pn) and L' = (p},...,p/y) we have

N N
L= L' if and only if Zunpn > Zunp’n

n—1 n=1

Theorem 38 Robust to Affine Transformations

Suppose U : A(X) — R is an expected utility representation of > . Then V : A(X) — R is
also an expected utility representation of > iff there exist some scalars a € R and b € R4 ¢
such that

V(p) = a+bU(p)
for all p € A(X).
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@ A linear representation is not unique. If U(p) is an expected utility
representation, we can rescale it, V(p) = a+ bU(p), a any and
b > 0, and obtain another expected utility representation, which is
linear.

o We say that an expected utility representation is robust to increasing
linear (affine) transformations.

o If U(p) is EUR, then V/(p) is EUR under appropriate a and b.

© aand b are not arbitrary but related to V (p), V (p) and U (p),
U(p)

@ When we go from U to V, we perform a linear change of variables.

o We map each point in the interval [U (p) , U (p)] into a point in the
interval [V (p), V (p)].

e Using V(p) = a+ bU(p), we get

V(p)U(p)—U(p)V(p) _ V()-V(p
~ U(p)-Ulp and b= 4G-(p)

27 3.2. Money Lotteries and Risk Aversion

228

229

231

232

233

@ In the finite case, a vNM utility function was
Ulp) = Zpiui-
@ The continuous analogue of a vNM utility function over cdfs is
U(F) = /}R u(x) dF (x) = Er [u(x)]

where U: F — R (“vNM utility function”) represents preferences
over lotteries,

u: R — R (“Bernoulli utility function”) indexes preference over
outcomes.

Definition 39 A decision maker is a risk averse (or exhibits risk aversion) if for any lottery
F(-), the degenerate lottery that yields the amount [ zdF(z) with certainty is at least as
good as the lottery F(-) itself. If the decision maker is always [i.e. for any F'(-)] indifferent
between these two lotteries, we say that he is risk neutral. Finally, we say that he is strictly
risk averse if indifference holds only when the two lotteries are the same [i.e. when F'(-) is
degenerate].
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u (Er x]) > Er [u(x)]
utility from certain payoff utility from the lottery
u(x)
U:F(X” __________ - |
EF _u(x)} ———————— —71' :
|
| |
| |
| |
| | |
I | |
* L L x

Er(x)

@ The inequality
u (Er[x]) Er [u(x)]
u( /}R xdF(x)) > /R u(x) dF (x)

is called Jensen's inequality.

\%

o It's a defining property of a concave function.

Theorem (4)

A decision-maker is (strictly) risk-averse iff her Bernoulli utility function is
(strictly) concave.

The decision-maker is risk-neutral iff u (-) is linear.

A

775 )| ity
u(2) = yu(1) + ) f-mmm e

W=

e e —————

Y ORRRREPR

Definition 40 Given a Bernoulli utility function u(-) we defined the following concepts:

1. The certainty equivalent of F(-), denoted ¢(F,u), is the amount of money for which
the individual is indifferent between the gamble F'(-) and the certain amount c¢(F,u);
that is

u(c(F,u)) = /u(x)dF(x)
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238 2. For any fixed amount of money x and positive number e, the probability premium
230 denoted by 7(z,e,u), is the excess on winning the probability over fair odds that
240 makes the individual indifferent between the certain outcome x and a gamble between
241 the two outcomes x + ¢ and  — e. That is
1 1
u(z) = <2 + W(m,&,u)) u(x +¢) + <2 - 7r(x,5,u)> u(r — e).

22 Proposition 41 Suppose a decision maker is an expected utility maximizer with a Bernoulli
223 utility function u(-) on amounts of money. Then the following properties are equivalent:

244 1. The decision maker is risk averse.
215 2. u(-) is concave.

246 3. ¢(F,u) < [zdF(z) for all F(-).
247 4. w(x,e,u) >0 for all z,e.

2#s Definition 42 Given a (twice differentiable) Bernoulli utility function u(-) for money, the
29 Arrow Pratt coefficient of absolute risk aversion at x is defined as r4(z) = —u”(z) /u/(x).

Definition (Arrow-Pratt coefficient)

For a twice differentiable Bernoulli utility function u(-), the Arrow-Pratt
coefficient of absolute risk aversion is
u//(x)

u'(x)

Au(x) = —

0 Definition 43 (More-risk-averse-than) Given two Bernoulli utility functions w;(+) and
251 uz(-), when can we say that us(-) is unambiguously more risk averse than w(-)? Several
252 possible approaches to a definition seem plausible:

253 1. ra(z,uz) > ra(x,uy) for every z.

254 2. There exists an increasing concave function 1 (-) such that ug(z) = ¥(ui(z)) at all
255 x; that is, ug(+) is a concave transformation of u;(-). [In other words, us(-) is “more
256 concave” than wui(-).]

257 3. ¢(F,uz) < c(F,uy) for any F(-).

258 4. w(x,e,uz) > m(x,e,up) for any = and e.

250 5. Whenever us(-) finds a lottery F(-) at least as good as a riskless outcome Z, then
260 u1(+) also finds F(-) at least as good as z. That is, [us(z)dF(z) > ua(Z) implies
261 Jui(z)dF(z) > uy(z) for any F(-) and Z.

22 Proposition 44 Definitions (i) to (v) of the more-risk-averse-than relation are equivalent.

23 Definition 45 The Bernoulli utility function u(-) for money exhibits decreasing absolute
264 Tisk aversion if r4(x,u) is a decreasing function of x.
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Proposition 46 The following properties are equivalent:

1.

2.

The Bernoulli utility function u(-) exhibits decreasing absolute risk aversion.

Whenever 2 < z1,ua(z) = u(z2+2) is a concave transformation of u;(z) = u(x; + 2).

. For any risk F(z), the certainty equivalent of the lottery formed adding risk z to

wealth level z, given by the amount ¢, at which u(c;) = [u(x+ 2)dF(z), is such that
(x — ¢y) is decreasing in x. That is, the higher z is, the less is the individual willing
to pay to get rid of the risk.

. The probability premium 7(x,e,u) is decreasing in x.

. For any F(z), if [u(ze+2)dF(z) > u(x2) and z9 < x1, then [u(z1+2)dF(z) > u(x1).

Definition (decreasing / constant / increasing absolute risk aversion)

The Bernoulli utility function u(-) has decreasing /constant / increasing
absolute risk aversion iff A,(-) is a decreasing / constant / increasing
function of x.

Definition 47 Given a Bernoulli utility function u(-), the coefficient of relative risk aver-
sion at x is rp(z,u) = —zu’ (z)/u'(z).

Definition (coefficient of relative risk aversion)

Given a twice differentiable Bernoulli utility function u(-),

Ry(x) = —x ‘Z'/:(())(()) = xA,(x).

We can define decreasing / increasing / constant relative risk aversion as
above, but using R, (-) instead of A,(-).

Proposition 48 The following conditions for a Bernoulli utility function u(-) on amounts
of money are equivalent:

1.
2.
3.

3.3.

rr(x,u) is decreasing in x.
Whenever z9 < x1, U2(t) = u(txrz) is a concave transformation of @ (t) = u(tx1).
Given any risk F'(¢) on ¢ > 0, the certainty equivalent ¢, defined by u(¢;) = [ u(tz)dF(t)

is such that x/¢, is decreasing in x.

Comparison of Payoff Distributions in Terms of Return and Risk

Definition 49 The distribution F(-) first-order stochastically dominates G(-) if, for every
nondecreasing function v : R — R, we have

/ w(z)dF(z) > / u(2)dG ().
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25 Proposition 50 The distribution of monetary payoffs F'(-) first-order stochastically dom-
286 inates the distribution G(-) if and only if F(z) < G(x) for every x.

Theorem (6)

Distribution G first-order stochastically dominates distribution F iff
G(x) < F(x) for all x.

i.e., lottery G is more likely than F to pay at least x for any threshold x.

2s7  Definition 51 For any two distributions F'(-) and G(-) with the same mean, F(-) second-
288 order stochastically dominates (or is less risky than) G(-) if for every nondecreasing concave
250 function v : Ry — R, we have

/u(:];)dF(x) > /u(m)dG(ac)

Theorem (6)

Distribution G second-order stochastically dominates distribution F iff

/ G(t)dtg/ F(t) dt for all x.

i.e., for all x, the area under G is smaller or equal than the area under F.

200 Proposition 52 Consider two distributions F'(-) and G(-) with the same mean. Then the
201 following statements are equivalent;:

202 1. F(-) second-order stochastically dominates G(-).
203 2. G(-) is a mean-preserving spread of F(-).

204 3. Property 51 holds.

@ In the definition of SOSD, G and F are assumed to have the same
mean. This assumption is made to prove the theorem about SOSD.

o If they G and F do not have the same mean, we can still compare
them in terms of SOSD.

@ Result: If G FOSD F => G SOSD F (left without a proof).
@ The converse should not be true.

24
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205 3.4. Imsurance

o Consider a strictly risk-averse agent (i.e., u” < 0).
@ His endowment of wealth is $w.

@ Suppose that there is just one state of the world: with probability p
he can loose $L.

He can ensure himself against this loss by purchasing insurance.
Each unit of insurance costs $q.

If the amount of insurance bought is a, the total cost is $qa.

In the case of loss, each unit of insurance pays 1$ (total payment is
$a) and nothing otherwise.

The agent maximizes expected utility:

max U(a) ={pulw—ga— L+ a]+ (1— p)ulw — qa]}.

What if insurance is actuarially fair?
o That is, the insurance company makes zero-profit. Suppose the
insurance company solves:
max [qa — pa] .
a

Then, the FOC wrt a is: g = p (i.e., the company sets price of
insurance equal to probability), and profit is zero.
@ The agent's FOC becomes
(1—p)pt [w—gqga*—L+a*]=p(1—p)d[w—qa*]
uw—gqga*— L+ a"]
w—ga*—L+a"=w-—gqga*
a*=1L

u' [w — qa*|

o That is, the agent fully insures himself against risk of loss.

What if insurance is not actuarially fair?

@ Suppose cost of insurance is above expected loss: g > p.
°g>p=(1-q)<(1-p)

e FOCis
ulw—ga'—L+a"] _ q(1-p)
v [w — qa*] p(1—q)
>1

uw—gqa* — L+ a*] > v [w— qa*]
— Since v is decreasing (u"' < 0):
w—ga*—L+3a" <w—gqa*
a* < L

@ The agent underinsures against risk of loss. Why? It's too costly to
transfer wealth to the loss state, so he transfers less than L.
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» 4. Producer Theory

27 4.1. Assumptions

208 A.1 Firms are price takers
200  A.2 Technology is exogenously given.

0 A.3 Firms maximize profits.

sm 4.2. Production Sets

302 Definition 53 Production Plan

Definition (production plan)

A vector y = (y1,...,¥n) € R" where an output has yx > 0 and an input
has yx < 0.

Note y is a net output vector.

Let (3,2,0,0) be a vector of inputs, and (0, 2,0, 4) be a vector of outputs.
Then, y = (—3,0,0,4).

Example (continued)

If the prices of these goods are p = (1,2, 1,2), then a firm earns profit of
p-y=(1212)-(-3004)" =5.

303 Definition 54 Production Set

Definition (production set)

Set Y C R" of feasible production plans; generally assumed to be
non-empty and closed.

x1< 0 and x> 0: good 1 is

-y used to produce good 2.
xr< 0'and x,< 0: goods 1 and
2 are used without producing any
output.

Y I{(O,O) (—3,9), (-1, 18)}.
Y :{xz—',-kxlg 0, <0, k> 0}
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Definition (shutdown)
0Dey.

Can produce nothing (no inputs, no outputs).
(In short-run, sometimes cannot do it quickly but in the long-run, yes)

Definition (free disposal)
y€Yandy <yimplyy €Y.

Can throw away any (continuous) amount of output or input

Violation of free disposal

A\ 4

s34 Proposition 55 The production set Y is additive and satisfies the nonincreasing returns
s05 condition if and only if it is a convex cone.

Definition (nonincreasing returns to scale)

y € Y implies ay € Y for all a € [0, 1].

— Any feasible y can be scaled down (no advantage from scaling production up).
— Implies shutdown (set & = 0).

Nonincreasing returns is not
satisfied:

Nonincreasing returns is satisfied:

27
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Definition (nondecreasing returns to scale)
y € Y implies ay € Y for all & > 1.

Can scale up (i.e., replicate).

Setup costs (0€ Y = can Sunk costs (0¢ Y).
recover costs, i.e., not sunk).

Definition (constant returns to scale)

y € Y implies ay € Y for all @ > 0; i.e., nonincreasing and nondecreasing
returns to scale.

1}!:

06 Definition 56 Convex Production Set

Definition (convex production set)

v,y €Yimply ty+ (1—t)y’ € Y forall t € [0, 1].

o Strictly convex iff for t € (0,1), the convex combination is in the
interior of Y

@ Nonconvex production set:

28
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Implications of the above assumptions:

o If 0 € Y, then convexity = nonincreasing returns to scale.

@ Nonincreasing returns to scale does not imply convexity.

Y

307 Definition 57 Transformation Function

Definition (transformation function)

Any function T: R” — R such that Y = {y € R": T (y) < 0}.

O T(y)>0 <= yis 2
outside of Y;
o T(y)=0 y T(y) >0
y is on the frontier Y; T(y) <0

QO T(y) <0 < yisin
the interior of Y slope™= MRT(y)
(there is some waste with

)

Definition (transformation frontier)

The set {€ R": T(y) = 0} (or production possibilities frontier).

If there is technological progress, the frontier is growing.

@ production function;
@ production set;
o transformation frontier.

Example (Cobb-Douglas function)

Alternative ways to define Cobb-Douglas technology with two inputs

y> < 0and y3 <0 (here, y = (y1,¥2,¥3)):

1.y = (—}’2)1/2 (—,"3)1/2 (production function);

2. Y= {(y1,y2.y3) inR3:y < (—y)'? (—ys)l/z} (production set);

3. T (y1,y2.y3) = y1 — (—y2)/% (—y3)'/? = 0 (transformation frontier).

8 4.3. Profit Maximization

300 Definition 58 Returns to Scale
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© Suppose there is just one firm: Y = F (K, N) = K*NP with
a + B > 0, where K=total capital, N=total labor.

@ Suppose we split this firm into x > 1 smaller firms. Will x smaller
firms produce more or less output?

@ Let each firm gets xth part of K and N: k = é and n= %

@ Denote by y output of a small firm. Each small firm uses the same
technology.

oY =y.-x=knP.x= (%)“ (%)ﬁ~x =x17=F. KNP =
Xl—:x—ﬁ .Y

olsY 2Y?

o If a + B =1, we have CRTS so that Y/ = Y = The number of firms
is not important for Y.

o If x4+ B > 1, we have IRTS, so that Y/ < Y =>It pays to be a big
firm.

o If « + B < 1, we have DRTS, so that Y’ > Y =t pays to be a small
firm.

s Definition 59 Marginal Rate of Transformation (MRT/MRTS)

When the transformation function is differentiable, we can define the
marginal rate of transformation of good / for good k.

Definition (marginal rate of transformation)

defined for points where T(y) = 0 and %kﬁ # 0.

Measures the extra amount of good k that can be obtained per unit
reduction of good /.

o To obtain MRT, we start from T (y) = 0.
o Find a full differential from two sides:

oT (y T(y
W) gy + 2T P g — o,
IYk ay
@ Thus,
MRT, 4 (7) = - 2 3T om0 o6 7 (7)

Cdy, 9T (y) /yk

s Definition 60 Elasticity of Substitution
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@ MRTS is one local measure of substitutability between inputs in
producing a given level of output.

@ To measure substitutability, economists use elasticity of substitution,
o, which is unit free.

@ Between two inputs, z; and z;, holding all other inputs and the level
of output constant, the elasticity is defined as the percentage change
in the input proportions, z;/z;, associated with a 1 percent change in
the MRTS between them.

o Formally,
P dln (Zj/z,‘) _ dlIn (ZJ/Z,)
= a(2)/9z\ ~ dIn(MRTS; ;
dln (af(z)/azj) n ( J)

d(Zj/Z,‘) d(MRTS,"j) _ d(Zj/Z,') MRTS,'J
z/z MRTS;; ~— dMRTS;; z/z '

Example (Elasticity)

of (z 1.8
agl) =0z z
of(z) _ B—1
o = Bziz; .
MRTS,,(5.2) = &2 = Ba 5 ¢

21@2) =% =150

_ d(z1/2) ;dMRTSy; dMRTS;1\ MRTSy _ af _

021 = z1/z) / MRTS;1 — 1/ ( d(z1/2) ) " Talzm EE =1

s12 Definition 61 Profit Maximization
Given prié:e vector p and productidn set Y, find optimal y:

max p-y max p-y
y or y
yey st. T(y) <0.
— Solve this problem for different p = Get an optimal supply
correspondence Y* (p) (Y* (p) = argmaxp - y).
yey

— After Y* (p) is found, compute profit at optimum: 7 (p) = pY™* (p)
(this is a value function: it gives us the optimal value of profit at different

p)-
- (p) =max p-y if 7t (p) is achieved.
yey

— 7 (p) = sup p-y if 7 (p) is not achieved.
yey

313 Definition 62 Isoprofitline

Isoprofit line
Isoprofit line: T = piy1 + pay2 + ... + PnYn-

o With 2 goods (2D case), T = piy1 + pay2, Y1 < 0 and yp, > 0.

Ory, = 2 = En
It's a line!
o With 3 goods (3D case), we have y3 = ;13 — By — B2y,
It's a plane!
7

o With 4 goods (4D case), we have ys =
It's a hyperplane!

m _ Py, _ P2, P
Pa Payl p4y2 p4y3'
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su 4.4, Rationalizability

sis Definition 63 Weak Axiom of Profit Maximization (WAPM)

The Weak Axiom of Profit Maximzation comes from two inferences:

@ True Y includes observed production y

o True Y lies below the current isoprofit line py.

Definition 10.

(WAPM) Supply correspondence § is rationalizable if and only if
py' <p-y, Vp,p'€R"ye(p),y €y(p)

If the firm chose y when facing prices p, must do better than y’, which
was the choice when facing prices p'.

WAPM is satisfied:

WAPM is not satisfied: 19 11
ply? < p'yl.

p1y2 > plyl.

OuTPUT

INPLT

Theorem (necessary conditions for rationalizability)

Part (i) Any rationalizable profit function 7t is convex.

Part (ii) Any rationalizable profit function 7t is homogeneous of degree
one, i.e., T(Ap) = A (p) forallpeR ", A > 0.

Part (iii) Any optimal supply correspondence Y* is homogeneous of degree
zero, i.e.,, Y* (Ap) = Y*(p) forallp €R ", all A > 0.

Theorem (part (i))

7t(-) is a convex function.

Fix any p1, p2 and let p; = tp; + (1 — t)py for t € [0,1]. Then for any
yey,

proy=tpi-y+(1—-t)p-y
—~— N

<n(p1) <7(p2)

< tr(pr) + (1 — t)7(p2).

Since this is true for all p; - y, it holds for sup,cy p; -y = 7(pt) :

7e(pe) < trr(pr) + (1 — t)7t(pe).
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Theorem (part (ii))

7t(+) is homogeneous of degree one, i.e., t(Ap) = Amt(p) for all p and
A>0.

That is, if you scale all (input and output) prices up or down the same
amount, you also scale profits by that amount.

Proof.

7(Ap) = sup Ap-y
yey

=Asupp-y
yey

= An(p).

| D

Theorem (part (iii))

Y*(-) is homogeneous of degree zero; i.e., Y*(Ap) = Y*(p) for all p and
A>0.

That is, a firm makes the same production choice if all (input and output)
prices are scaled up or down the same amount

Proof.

Y*(Ap)={y € Y: Ap-y = m(Ap)}
={yeY:Ap-y=2an(p)}
={yeY: py= n(p)}
=Y*(p).

s16 Definition 64 Euler’s Law

Theorem (Euler’s Law)

Suppose f(-) is differentiable. Then it is homogeneous of degree k iff
x - VF(x) = kf(x).

Corollary

If f(-) is homogeneous of degree one, then Vf (-) is homogeneous of
degree zero.

Proof.
Homegeneity of degree one means

Af (x) = f (Ax) .
Differentiating it in x,

AVF(x) = AVF(Ax)
Vf(x) = Vf(Ax).
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sz Definition 65 Hotelling’s Lemma

Theorem (Euler's Law)

Suppose f(-) is differentiable. Then it is homogeneous of degree k iff
x - VF(x) = kf(x).

Corollary
If f(-) is homogeneous of degree one, then Vf (-) is homogeneous of
degree zero.

Proof.

Homegeneity of degree one means
Af (x) = f (Ax).
Differentiating it in x,

AVF(x) = AVF(Ax)
Vf(x) = Vf(Ax).

sis Definition 66 Law of Supply

@ To obtain a finite-change version of this condition, write a double
application of WAPM:

Py (p') = py(p) py (p) = py ()
Pliy()—y(m)>0 —py(p)—y(p)) >0

Add to get
(P =p)-(y(p)—y(p)) >0
e Thatis, ApAy > 0.
@ This inequality is known as the “Law of Supply”.

@ The differentiable version: dp-dy > 0. That is, supply changes in the
direction of the price change.

a0 4.5. Cost Minimization Problem (CMP)

320 Definition 67 Single-output Firm

Recall notation for a single-output firms:

p € Ry: Price of output
w € ]RQ’_’I: Prices of inputs
q € R;: Output produced
z € ]RQ’_’I: Inputs used

Thus, a price vector is (p, w) € R" and a net output vector (production
plan) is (g, —z) € R"™.
We will often denote m = n— 1.
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Definition (production function)

For a firm with a single output g (and inputs —z € R™), the production
function f : RT — R, is defined as a maximum output that can be
produced from the given amount of inputs: g = f(z), where z € R7.

Cobb-Douglas production function: q = f(z1,2) = z¢z} 7%, a € (0, 1).
CES production function: g = f(z1, ) = (2} + zg)l/p. 0#p <Ll

With one output, free disposal, and production function f(-), the
production set is

Y ={(9,—2z): z€ R} and f(z) > q}.

21 Definition 68 Cost Minimization

o If p > 0, the firm will never dispose any output (cannot have
q < f(2)).
o Instead, it will choose g = f(z) to maximize profit:

ng]a;{xT pf(z) —w-z

revenue cost
@ Let us fix the revenue.

o Observation: To maximize profit for a fixed revenue, the firm needs to
minimize cost.

@ Cost minimization can be viewed as an intermediate step in profit
maximization.

We separate the profit maximization problem into two parts:

1. Find a cost-minimizing way to produce a given output level q
(cost-minimization problem, CMP).

o Cost function (it's a value function — maximum value of the objective
function for Vg, w (parameters)):

CMP : c(g.w) =inf,. ¢ W-2,

where CMP means "cost minimization problem".
o Conditional factor (input) demand correspondence (it's a solution to
CMP)
Z*(q,w)=arg min w-z
(q.w) g, mn
={z:f(z) >qand w-z=c(q,w)}.

("conditional" means that q is given).

2. Find an output level that maximizes the difference between revenue
and cost, given the optimal cost function.

OOP : maxq>0 {pg—c(q,w)},

where OOP means "optimal output problem".
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= 5. General Equilibrium

23 Definition 69 The Walrasian Model

Lgoodsfe L={1,...,L}.
I consumers i € T = {1,...,1}.

Consumers do not have monetary wealth, but rather an endowment of
goods which they can trade or consume.

el € ]Rf;_ is endowment of consumer i.

x' e ]Ri is consumption bundle of consumer i.

Preferences are represented by utility function u': ]Rﬁ_ — R.
Economy £ = ((ui,ei)iez).

Endogenous prices p € ]Ri. Each consumer takes p as given.

Each consumer i solves
max u'(x")
)(’G]KLF

s.t. p«xigp«ei,

where, p- €' is the consumer's wealth (if he sells his endowment).

Here, logistics does not matter (he can either sell everything or sell
the difference of what he needs).
Equivalently, he solves
max u'(x'),
x€Bi(p)

where Bi(p) = {x' € R} : p-x’ < p-e'} is the budget set for i.

32 Definition 70 Walrasian Equilibrium

Definition (Walrasian equilibrium)

A Walrasian equilibrium for economy & is price p and quantities (x’
such that

)ieI

O All agents maximize their utilities; i.e., for all i € Z,

xiear max uix;
3 e (x)

@ Markets clear; i.e., for all £ € L,

Yoxi=Y ¢

i€l i€

»s  Definition 71 Pareto Optimality / Pareto Efficiency

36



oo

CoruMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Definition (feasible allocation)

An allocation (x')€Z € RI*L is feasible iff for all goods £ € £,

Zx} < Ze/’;.

i€ i€l

Definition (Pareto optimality)

Given an economy &, a feasible allocation x = (x')€Z is Pareto optimal if
there is no other feasible allocation % such that u'(%") > u'(x") for all
i € Z with strict inequality for some i.

26 Definition 72 Edgeworth Box

Al. u(-) is continuous;
A2. u(-) is increasing; i.e., x” > x" = ui(x") > ui(x');
A3. u'(-) is concave;

A4. e > 0; i.e., every agent has at least a little bit of every good.

Definition (monotone)
> is monotone iff x >y = x > y.

Definition (local non-satiation)

> is locally non-satiated iff for any x and € > 0, there exists y such that
Ix—yll <eandy > x.

i.e., there are some desirable commodities.
@ A2 means (strict) monotonicity. It implies local nonsatiation.
@ By A3, if ui(~) is concave = quasiconcave. Both mean convexity of
preferences.
@ We do not want to get maximum generality of our results:
o A2 can be weakened to local nonsatiation.
o A3 can be weakened to quasiconcavity (preferences are convex).
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X 2
X2 7 &':1 Agent 2
ezl .u....e-% .............. e%
: x1
Agent 1 e; 271

X3

Agents 1 and 2 have the same budget line:

p-x!=p-eland p-x2=p-e

Xl
2 f Agent 2

Agent 1 X1

Equilibrium if the agents choose the same point.

2
X12 \ Agent 2
P
N
!
Agent 1 ,
X2
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Because the agents choose different points, there is no market clearing at
these prices (non-equlibrium prices).

Agent 2

Agent 1

The offer curve traces

out Marshallian (Walrasian) demand as prices
change. Note that the offer curve starts at e.

p%
, £
X

Agent 2

\

Agent 1

Agent 2

Agent 1
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X
X12 . Agent 2
\
~___|
Q- oG,
\ ~~a _-
) - -
TG
R :
VI NG ;
I, Xl
Agent 1 p 1
X2
Generically, there is an odd number of equilibria.
The Pareto set is the locus of Pareto optimal allocations.
2
X12 Agent 2
~J\
Xl
Agent 1 1

set that makes each better off than e.

We expect agents to reach the contract curve: the portion of the Pareto

Xi

7

Agent 1

Agent 2

points inside the contract curve.

If the agents can bargain, they can observe that they can move to the

Definition 73 Walrasian Equilibrium and Pareto Optimality
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WE and PO are very different concepts.

Pareto optimum
© An allocation

given aggregate endowments and individual preferences.

Walrasian equilibrium

@ An allocation
@ Prices

given individual endowments and preferences.

@ We want to know the connection between WE and PO. = Welfare
Theorems.
@ Welfare Theorems impose conditions under which:
o WE = PO (First Welfare Theorem).
o PO = WE (Second Welfare Theorem).

s Definition 74 First Welfare Theorem

Theorem (First Welfare Theorem)

(Arrow, 1951, Debreu, 1951). Let (p, (x’)iez) be a Walrasian equilibrium.
Then if preferences are locally nonsatiated, the allocation (x')'€Z is Pareto
optimal.

A WE x* is not PO because agent 1's preferences fail to satisfy local
nonsatiation (in turn, x is PO).

3l k‘(‘f-—\ 0,

[N

20 Definition 75 Second Welfare Theorem

Theorem (Second Welfare Theorem)

(Arrow, 1951, Debreu, 1951). Let £ be an economy that satisfies:
Al. u(-) is continuous;

A2. ui(-) is increasing; i.e., u'(x") > u'(x") whenever x"" > xI;
A3. u'(-) is concave;

A4. e > 0; ie., every agent has at least a little bit of every good.

If (')’ €T s Pareto optimal, then there exists a price vector p € ]Rﬁr such
that (p, (e')'€T) is a Walrasian equilibrium for €.
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Examples of failure of the Second Welfare Theorem

Example 1: Arrow's exceptional

case (6] =0& €2 =0; if Example 2: Nonconvex
p2 =0, agent 1 has 0 wealth). preferences.
- Budget Line Tangent 10
Agent 2 A \, Indifference Curves at x*
- ‘l va 1
v
\\
Direction of increasing N
nce for agent | e = (e
-— ‘ \
S .
Direction of increasing k\”l
preference for agent 2 Z; )
0,
A

Agent |

330 Definition 76 Finding a Pareto Optimal Allocation Using Its Definition

Definition (Pareto optimality)

Given an economy &, a feasible allocation x = (x')'€Z is Pareto optimal if
there is no other feasible allocation % such that u'(%") > u'(x') for all
i € Z with strict inequality for some i.

o Construct an algorithm for finding a PO allocation based on the
above definition (later we'll see a different construction).

Step 1. Choose the utility levels attained by agents i € {2,..., 1} and fix them.
Step 2. Maximize agent 1's utility subject to the utility levels of the other
agents, fixed in Step 1.

o Find a PO allocation by solving the following problem:

max ut(x)
NS IxL
(i)' <LeR/

such that

(1) d(x>a fori=2,...,1
(2) EiEIXé S EiEI eé for Z = 1, ceey L.

o We refer to constraints (1) as promise-keeping constraints, and (2) as
the economy'’s resource constraints (or feasibility constraints).
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o A Pareto problem:
max  ut(x})
(X,-)IEZE]RIerL
such that

(1) x>0
(2) ui(x') > o fori=2,...,1
(3) Lierx) < Tijcre) ford=1,..., L

By our normalization, u/(x’) > 0. So, &' > 0 forall i € {2,...,1}.
Let A" = multiplier on u'(x') > @',

Let u, = multiplier on Z,»xtf <Y eg.

@ Under our assumptions, these constraints of type (1) and (2) will be
binding at a solution.

Thus, A’ >0fori=2,...,/and p, >0for£=1,...,L.

! . . . L . . . .
L=ul(x")+ ;/\' (u'(x") =) +2_21 ; [e(er =) =72 (=x0)]

where 72 = Lagrange multiplier associated with constraint xé > 0.

e FOC wrt le :
ot
ax;

° FOertxtf forallie{2,...,1}:

—pg ;=0

iU’ i
aixé_]/lg'f")/g—o.

@ Thus, the FOC for agent 1 is the same as FOC for all i € {2,...,/}

under Al = 1.

o By complementary slackness, 'ylef = 0. 2 possible cases:

o (i) v, >0and x; =0:

au'
'— —u,<0.
ax, e =
o (if) v, =0and x} > 0: .
jou’
i _
8xlf He

o Summarizing the FOCs of all agents i € Z :

aLIi . P i
— < u, with equality if x; > 0.

Ai
ox; —
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