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1. Preference and Choice1

There are two distinct approaches to modeling individual choice behavior.2

The first one treats the decision makers’ tastes, as summarized in their Preference3

Relation, as the primitive characteristic of the individual.4

The second approach treats the individual’s choice behavior as the primitive feature and5

proceeds by making assumptions directly concerning this behavior. A central assumption6

in this approach is the Weak Axiom of Revealed Preference.7

1.1. Preference Relations8

In the preference-based approach, the objectives of the decision maker are summarized in9

a preference relation, which denote by ⪰. ⪰ is a binary relation on the set of alternatives10

X, allowing the comparison of pairs of alternatives x, y ∈ X.11

Definition 112

(1) The Prefence Relation ⪰ is defined as:13

x ⪰ y ⇔ x is at least as good as y

(2) The Strict Prefence Relation ≻ is defined as:14

x ≻ y ⇔ x ⪰ y ∧ y ⪰̸ x

(3) The Indifference Relation ∼ is defined as:15

x ∼ y ⇔ x ⪰ y ∧ y ⪰ x
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Definition 2 The preference relation ⪰ is Rational if it is16

(1) Complete: ∀x, y ∈ X,x ⪰ y ∨ y ⪰ x.17

(2) Transitive: ∀x, y, z ∈ X,x ⪰ y ∧ y ⪰ z ⇒ x ⪰ z.18

Theorem 3 If ⪰ is rational, then19

(1) ≻ is irreflective (∀x ∈ X,x ⊁ x) and transitive.20

(2) ∼ is reflective (∀x ∈ X,x ∼ x), transitive and symmetric (∀x, y ∈ X,x ∼ y ⇐ y ∼ x).21

Definition 4 Utility Functions22

A Utility Function u(x) assigns a numerical value to each element in X, ranking the23

elmenst fo X in acordance with the individual’s proferences. u : X → R is a utility function24

representing preference relation ⪰ if,25

∀x, y ∈ X,x ⪰ y ⇔ u(x) ≥ u(y)

The utility function that represents apreference relation is not unique. it is only the ranking26

of alternatives that matters. The preference relation associated with a utility function is27

an Ordinal property (invariant for any strictly increasing transformation). The numerical28

values associated with the alternatives in X, and hence the magnitude of any differences in29

the utility measure between alternatives, are Cardinal properties (does not preserve under30

all strictly increasing transformation).31

Theorem 5 A preference relation ≿ can be represented by a utility function only if it is32

rational.33

1.2. Choice Rules34

In the second approach to the theory of decision making, choice behavior is represented by35

means of a choice structure.36

Definition 6 Choice Structure37

A Choice Structure
(
B, C(·)

)
consists of two ingredients:38

(1) B is a family (a set) of nonempty subsets of X(B ⊆ 2X). The elements B ∈ B are39

budget sets.40

(2) C(·) is a choice rule that assigns a nonempty set of chosen elements C(B) ⊆ B for41

every budget set B ∈ B. When C(B) contains a single element, that element is the42

individual’s choice from among the alternatives in B. When C(B) contains multiple43

elements, the elements of C(B) are the acceptable alternatives in B that the decision44

maker might choose.45
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Definition 7 The Weak Axiom of Revealed Preference46

The choice structure
(
B, C(·)

)
satisfies The Weak Axiom of Revealed Preference if47

the following property holds:48

If ∃B ∈ B with x, y ∈ B s.t. x ∈ C(B),

then ∀B′ ∈ B with x, y ∈ B′ and y ∈ C(B′), we have x ∈ C(B′).

The weak axiom of revealed preference says that if x is ever chosen when y is available,49

then there can be no budget set containing both alternatives for which y is chosen and x is50

not. If x is revealed at least as good as y, then y cannot be revealed preferred to x.51

Figure 1: HARP.

Figure 2: WARP.
HARP is WARP with all possible choice sets (B = 2X). HARP is necessary and sufficient52

for rationalizability. WARP is necessary but not sufficient for rationalizability.53
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Theorem 8 Suppose ⪰is complete and transitive and B is finite and non-empty, then54

C(B,⪰) ̸= ∅.55

Figure 3: E.g.

1.3. The Relationship between Preference Relations and Choice Rules56

Proposition 9 Suppose that ≿ is a rational preference relation. Then the choice structure57

generated by ≿, (B, C∗(·,≿)) satisfies the weak axiom.58
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Definition 10 Given a choice structure (B, C(·)), we say that the rational preference re-59

lation ≿ rationalizes C(·) relative to B if60

C(B) = C∗(B,≿)

for all B ∈ B, that is, if ≿ generates the choice structure (B, C(·)).61

Proposition 11 Arrow Theorem62

If (B, C(·)) is a choice structure such that63

1. the weak axiom is satisfied,64

2. B includes all subsets of X of up to three elements,65

then there is a rational preference relation ≿ that rationalizes C(·) relative to B; that is,66

C(B) = C∗(B,≿), for all B ∈ B. Furthermore, this rational preference relation is the only67

preference relation that does.68

1.4. Properties of Preferences69
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Definition 12 Monotonicity70

⪰ satisfies Monotonicity at bundle y iff ∀x ∈ X:71

(1) Monotone: ∀k, xk ≥ yk ⇒ x ⪰ y.72

(2) Strictly Monotone: ∀k, xk > yk ⇒ x ≻ y.73

(3) Strongly Monotone: ∀k, xk ≥ yk ∧ x ̸= y ⇒ x ≻ y.74

Definition 13 Local Non-Satiation75

⪰ is Locally Non-satiated iff ∀x, ∀ϵ > 0, ∃y s.t. ∥x− y∥ ≤ ϵ
(
∃y ∈ Bϵ(x)

)
and y ≻ x.76

If x is strictly monotone, then it is locally non-satiated.77
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Definition 14 Convex Preferences78

(1) ⪰ is Convex iff79

y ⪰ x ∧ z ⪰ x⇒ ∀λ ∈ (0, 1), λy + (1− λ)z ⪰ x

(2) ⪰ is Convex iff the upper contour set of any x is a convex set.80

(3) ⪰ is Strictly Convex iff81

y ⪰ x ∧ z ⪰ x⇒ ∀λ ∈ (0, 1), λy + (1− λ)z ≻ x

(4) Convex preferences capture the idea that people like diversity. Convexity prohibits82

the agent from preferring extremes in consumption.83

Concavity is not preserved under monotonic transformations.84
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Definition 15 Equivalent Utility Functions85

Definition 16 Homotheticity86

⪰ is homothetic iff ∀x, y and ∀λ > 0:87

x ⪰ y ⇔ λx ⪰ λy

88

Definition 17 Separability89

Preferences over x do not depend on y, i.e. ∀x, x′ ∈ X and ∀y1, y2 ∈ Y :90

(x′, y1) ⪰ (x, y1) ⇔ (x′, y2) ⪰ (x, y2)
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Definition 18 Quasi-linearity91

The following u(x1, x2) is linear in x1 and non-linear in x2:92

u(x1, x2) = x1 + v(x2)

Each indifference curve is a horizontally shifted copy of the others.93
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2. Classical Demand Theory94

2.1. The Utility Maximization Problem95

Proposition 19 If p ≫ 0 and u(·) is continuous, then the utility maximization problem96

has a solution.97

Proposition 20 Suppose that u(·) is a continuous utility function representing a locally98

nonsatiated preference relation ≿ defined on a consumption set X = RL
+. Then the Wal-99

rasian demand correspondence x(p, w) possesses the following properties:100

1. Homogeneity of degree zero in (p, w): x(αp, αw) = x(p, w) for any p, w and scalar α.101

2. Walras’ law: p · x = w for all x ∈ x(p, w).102
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3. Convexity/uniqueness: If ≿ is convex, so that u(·) is quasiconcave, then x(p, w) is a103

convex set. Moreover, if ≿ is strictly convex, so that u(·) is strictly quasiconcave, then104

x(p, w) consists of a single element.105

Proposition 21 Suppose that u(·) is a continuous utility function representing a locally106

nonsatiated preference relation ≿ defined on the consumption set X = RL
+. The indirect107

utility function v(p, w) is108

1. Homogeneous of degree zero.109

2. Strictly increasing in w and nonincreasing in pℓ for and ℓ.110

3. Quasiconvex; that is, the set {(p, w) : v(p, w) ≤ v̄} is convex for any v̄.111

4. Continuous in p and w.112

2.2. The Expenditure Minimization Problem113

Proposition 22 Suppose that u(·) is a continuous utility function representing a locally114

nonsatiated preference relation ≿ defined on the consumption set X = RL
+ and that the115

price vector is p≫ 0. We have116

1. If x∗ is optimal in the UMP when wealth is w > 0, then x∗ is optimal in the EMP117

when the required utility level is u(x∗). Moreover, the minimized expenditure level in118

this EMP is exactly w.119

2. If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is120

optimal in the UMP when wealth is p · x∗. Moreover, the maximized utility level in121

this UMP is exactly u.122

Proposition 23 Suppose that u(·) is a continuous utility function representing a locally123

nonsatiated preference relation ≿ defined on the consumption set X = RL
+. Then the124

expenditure function e(p, u) is125
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1. Homogeneous of degree one in p.126

2. Strictly increasing in u and nondecreasing in pℓ for any ℓ.127

3. Concave in p.128

4. Continuous in p and u.129

Proposition 24 Suppose that u(·) is a continuous utility function representing a locally130

nonsatiated preference relation ≿ defined on the consumption set X = RL
+. Then for any131

p≫ 0, the Hicksian demand correspondence h(p, u) possesses the following properties:132

1. Homogeneity of degree zero in p: h(αp, u) = h(p, u) for any p, u and α > 0.133

2. No excess utility: For any x ∈ h(p, u), u(x) = u.134

3. Convexity/uniqueness: If ≿ is convex, then h(p, u) is a convex set; and if ≿ is strictly135

convex, so that u(·) is strictly quasiconcave, then there is a unique element in h(p, u).136

Proposition 25 Suppose that u(·) is a continuous utility function representing a locally137

nonsatiated preference relation ≿ and that h(p, u) consists of a single element for all p≫ 0.138

Then the Hicksian demand function h(p, u) satisfies the compensated law of demand: For139

all p′ and p′′,140

(p′′ − p′) · [h(p′′, u)− h(p′, u)] ≤ 0.

2.3. Duality141

Definition 26 For any nonempty closed set K ⊂ RL, the support function of K is defined142

for any p ∈ RL to be143

µK(p) = inf{p · x : x ∈ K}.

Proposition 27 (The Duality Theorem) LetK be a nonempty closed set, and let µK(·)144

be its support function. Then there is a unique x̄ ∈ K such that p̄ · x̄ = µK(p̄) if and only145

if µK(·) is differentiable at p̄. Moreover, in this case,146

∇µK(p̄) = x̄.

2.4. Relationships between Demand, Indirect Utility, and Expenditure147

Functions148
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Proposition 28 Suppose that u(·) is a continuous utility function representing a locally149

nonsatiated and strictly convex preference relation ≿ defined on the consumption set X =150

RL
+. For all p and u, the Hicksian demand h(p, u) is the derivative vector of the expenditure151

function with respect to prices:152

h(p, u) = ∇pe(p, u).

That is, hℓ(p, u) = ∂e(p, u)/∂pℓ for all ℓ = 1, . . . , L.153

Proposition 29 (Roy’s Identity) Suppose that u(·) is a continuous utility function rep-154

resenting a locally nonsatiated and strictly convex preference relation ≿ defined on the155

consumption set X = RL
+. Suppose also that the indirect utility function is differentiable156

at (p̄, w̄) ≫ 0. Then157

x(p̄, w̄) = − 1

∇wv(p̄, w̄)
∇pv(p̄, w̄).

That is, for every ℓ = 1, . . . , L:158

xℓ(p̄, w̄) = −∂v(p̄, w̄)/∂pℓ
∂v(p̄, w̄)/∂w

.

Proposition 30 (The Slutsky Equation) Suppose that u(·) is a continuous utility func-159

tion representing a locally nonsatiated and strictly convex preference relation ≿ defined on160

the consumption set X = RL
+. Then for all (p, w), and u = v(p, w), we have161

∂hℓ(p, u)

∂pk
=
xℓ(p, w)

pk
+
xℓ(p, w)

∂w
xk(p, w) for all ℓ, k
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2.5. Marshallian Response to Changes in Wealth162
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2.6. Marshallian Response to Changes in Own Price163

2.7. Marshallian Response to Changes in Other Goods’ Price164
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2.8. Hicksian Response to Changes in Other Goods’ Price165
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3. Uncertainty166

3.1. Expected Utility Theory167

Definition 31 Von Neumann-Morgenstern Expected Utility Model168

(1) X = set of all possible prizes (outcomes or consequences), X = {x1, ..., xn}. X can169

take many forms (e.g.,consumption bundles, monetary payoffs).170

(2) |X | = n <∞. There must be a best outcome and a worst outcome.171

(3) A Simple Lottery is a probability distribution p = (p1, . . . , pn) ∈ Rn
+ over prizes,172

where pi is the probability that outcome xi occurs. A simple lottery can be represented173

geometrically in the (n− 1) dimensional simplex:174

∆(X ) ≡

{
p ∈ Rn

+:

n∑
i

pi = 1

}

Figure 4: Simple lottery.

A simple lottery L is a list L = (p1, . . . , pN ) with pn ≥ 0 for all n and
∑

n pn = 1,175

where pn is interpreted as the probability of outcome n occurring.176

(4) A Compound Lottery allows the outcomes of a lottery themselves to be simple177

lotteries.178

Figure 5: Compound lottery.
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Given K simple lotteries Lk = (pk1, . . . , p
k
N ), k = 1, . . . ,K, and probabilities αk ≥ 0179

with
∑

k αk = 1, the compound lottery (L1, . . . , LK ;α1, . . . , αK) is the risky alternative180

that yields the simple lottery Lk with probability αk for k = 1, . . . ,K.181

Definition 32 Preferences Over Lotteries182

(1) A rational decision-maker has preferences over outcomes in X .183

(2) We consider preferences over lotteries ∆(X ). From now on, ⪰ refers to preferences184

over lotteries, not outcomes.185

• A.1. ⪰ is rational (complete and transitive) on the set of all lotteries over the set of186

outcomes X .187

• A.2. ⪰ is continuous.188

• A.3. ⪰ satisfies independence axiom.189

Definition 33 Continuity of Preferences190

A preference relation ⪰ over ∆(X ) is continuous iff for any pH , pM , and pL ∈ X such that191

pH ⪰ pM ⪰ pL, there exists some α ∈ [0, 1] such that:192

αpH + (1− α)pL ∼ pM

i.e., if you move slightly away (say in the direction of the worst lottery pL) from one lottery193

which you prefer pH over a second one pM , at some point, you will be indifferent to the194

second one.195

Definition 34 Independence Axiom196

A preference relation ⪰ over ∆(X ) satisfies independence iff for any p, p′, and pm ∈ ∆(X )197

and any α ∈ [0, 1], we have198

p ⪰ p′ ⇔ αp+ (1− α)pm ⪰ αp′ + (1− α)pm

i.e., if p is at least as good as p′, then the possibility of p is at least as good as the possibility199

of p′, as long as the other possibility is the same (a (1 − α) chance of pm ) in both cases.200

Similar relationships hold for ≻ and ∼.201

Figure 6: E.g.
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Definition 35 Von Neumann-Morgenstern Utility Functions202

A utility function U : ∆(X ) → R is a VNM utility function (equivalently, has an expected203

utility form) iff there exist numbers u1, . . . , un ∈ R such that for every p ∈ ∆(X ),204

U(p) =

n∑
i=1

piui = p · #u

where #u ≡ (u1, . . . , un) ∈ Rn.205

The utility function U : L → R has an expected utility form if there is an assignment of num-206

bers (u1, . . . , uN ) to theN outcomes such that for every simple lottery L = (p1, . . . , pN ) ∈ L207

we have208

U(L) = u1p1 + · · ·+ uNpN .

A utility function U : L → R with the expected utility form is called a von Neumann-209

Morgenstern (v.N-M) expected utility function.210

Theorem 36 Linearity of VNM Utility Functions211

A utility function U : ∆(X ) → R is a VNM utility function iff it is linear, i.e.,it satisfies:212

U(αp+ (1− α)p′) = αU(p) + (1− α)U(p′)

for all p, p′ ∈ ∆(X ), and α ∈ [0, 1].213

A utility function U : L → R has an expected utility form if and only if it is linear, that214

is, if and only if it satisfies the property that215

U

(
K∑
k=1

αkLk

)
=

K∑
k=1

αkU(Lk)

for any K lotteries Lk ∈ L , k = 1, . . . ,K, and probabilities (α1, . . . , αK) ≥ 0,
∑

k αk = 1.216

Theorem 37 Expected Utility Theorem217

Suppose that the rational preference relation ≿ on the space of lotteries L satisfies the218

continuity and independence axioms. Then ≿ admits a utility representation of the expected219

utility form. That is, we can assign a number un to each outcome n = 1, . . . , N in such a220

manner that for any two lotteries L = (p1, . . . , pN ) and L′ = (p′1, . . . , p
′
N ) we have221

L ≿ L′ if and only if
N∑

n−1

unpn ≥
N∑

n=1

unp
′
n.

Theorem 38 Robust to Affine Transformations222

Suppose U : ∆(X ) → R is an expected utility representation of ⪰ . Then V : ∆(X ) → R is223

also an expected utility representation of ⪰ iff there exist some scalars a ∈ R and b ∈ R++224

such that225

V (p) = a+ bU(p)

for all p ∈ ∆(X ).226
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3.2. Money Lotteries and Risk Aversion227

Definition 39 A decision maker is a risk averse (or exhibits risk aversion) if for any lottery228

F (·), the degenerate lottery that yields the amount
∫
xdF (x) with certainty is at least as229

good as the lottery F (·) itself. If the decision maker is always [i.e. for any F (·)] indifferent230

between these two lotteries, we say that he is risk neutral. Finally, we say that he is strictly231

risk averse if indifference holds only when the two lotteries are the same [i.e. when F (·) is232

degenerate].233
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Definition 40 Given a Bernoulli utility function u(·) we defined the following concepts:234

1. The certainty equivalent of F (·), denoted c(F, u), is the amount of money for which235

the individual is indifferent between the gamble F (·) and the certain amount c(F, u);236

that is237

u (c(F, u)) =

∫
u(x)dF (x).
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2. For any fixed amount of money x and positive number ε, the probability premium238

denoted by π(x, ε, u), is the excess on winning the probability over fair odds that239

makes the individual indifferent between the certain outcome x and a gamble between240

the two outcomes x+ ε and x− ε. That is241

u(x) =

(
1

2
+ π(x, ε, u)

)
u(x+ ε) +

(
1

2
− π(x, ε, u)

)
u(x− ε).

Proposition 41 Suppose a decision maker is an expected utility maximizer with a Bernoulli242

utility function u(·) on amounts of money. Then the following properties are equivalent:243

1. The decision maker is risk averse.244

2. u(·) is concave.245

3. c(F, u) ≤
∫
xdF (x) for all F (·).246

4. π(x, ε, u) ≥ 0 for all x, ε.247

Definition 42 Given a (twice differentiable) Bernoulli utility function u(·) for money, the248

Arrow Pratt coefficient of absolute risk aversion at x is defined as rA(x) = −u′′(x)/u′(x).249

Definition 43 (More-risk-averse-than) Given two Bernoulli utility functions u1(·) and250

u2(·), when can we say that u2(·) is unambiguously more risk averse than u1(·)? Several251

possible approaches to a definition seem plausible:252

1. rA(x, u2) ≥ rA(x, u1) for every x.253

2. There exists an increasing concave function ψ(·) such that u2(x) = ψ(u1(x)) at all254

x; that is, u2(·) is a concave transformation of u1(·). [In other words, u2(·) is “more255

concave” than u1(·).]256

3. c(F, u2) ≤ c(F, u1) for any F (·).257

4. π(x, ε, u2) ≥ π(x, ε, u1) for any x and ε.258

5. Whenever u2(·) finds a lottery F (·) at least as good as a riskless outcome x̄, then259

u1(·) also finds F (·) at least as good as x̄. That is,
∫
u2(x)dF (x) ≥ u2(x̄) implies260 ∫

u1(x)dF (x) ≥ u1(x̄) for any F (·) and x̄.261

Proposition 44 Definitions (i) to (v) of the more-risk-averse-than relation are equivalent.262

Definition 45 The Bernoulli utility function u(·) for money exhibits decreasing absolute263

risk aversion if rA(x, u) is a decreasing function of x.264
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Proposition 46 The following properties are equivalent:265

1. The Bernoulli utility function u(·) exhibits decreasing absolute risk aversion.266

2. Whenever x2 < x1, u2(z) = u(x2+z) is a concave transformation of u1(z) = u(x1+z).267

3. For any risk F (z), the certainty equivalent of the lottery formed adding risk z to268

wealth level x, given by the amount cx at which u(cx) =
∫
u(x+ z)dF (z), is such that269

(x − cx) is decreasing in x. That is, the higher x is, the less is the individual willing270

to pay to get rid of the risk.271

4. The probability premium π(x, ε, u) is decreasing in x.272

5. For any F (z), if
∫
u(x2+z)dF (z) ≥ u(x2) and x2 < x1, then

∫
u(x1+z)dF (z) ≥ u(x1).273

Definition 47 Given a Bernoulli utility function u(·), the coefficient of relative risk aver-274

sion at x is rR(x, u) = −xu′′(x)/u′(x).275

Proposition 48 The following conditions for a Bernoulli utility function u(·) on amounts276

of money are equivalent:277

1. rR(x, u) is decreasing in x.278

2. Whenever x2 < x1, ũ2(t) = u(tx2) is a concave transformation of ũ1(t) = u(tx1).279

3. Given any risk F (t) on t > 0, the certainty equivalent c̄x defined by u(c̄x) =
∫
u(tx)dF (t)280

is such that x/c̄x is decreasing in x.281

3.3. Comparison of Payoff Distributions in Terms of Return and Risk282

Definition 49 The distribution F (·) first-order stochastically dominates G(·) if, for every283

nondecreasing function u : R → R, we have284 ∫
u(x)dF (x) ≥

∫
u(x)dG(x).
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Proposition 50 The distribution of monetary payoffs F (·) first-order stochastically dom-285

inates the distribution G(·) if and only if F (x) ≤ G(x) for every x.286

Definition 51 For any two distributions F (·) and G(·) with the same mean, F (·) second-287

order stochastically dominates (or is less risky than) G(·) if for every nondecreasing concave288

function u : R+ → R, we have289 ∫
u(x)dF (x) ≥

∫
u(x)dG(x).

Proposition 52 Consider two distributions F (·) and G(·) with the same mean. Then the290

following statements are equivalent:291

1. F (·) second-order stochastically dominates G(·).292

2. G(·) is a mean-preserving spread of F (·).293

3. Property 51 holds.294
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3.4. Insurance295
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4. Producer Theory296

4.1. Assumptions297

A.1 Firms are price takers298

A.2 Technology is exogenously given.299

A.3 Firms maximize profits.300

4.2. Production Sets301

Definition 53 Production Plan302

Definition 54 Production Set303
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Proposition 55 The production set Y is additive and satisfies the nonincreasing returns304

condition if and only if it is a convex cone.305
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Definition 56 Convex Production Set306
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Definition 57 Transformation Function307

4.3. Profit Maximization308

Definition 58 Returns to Scale309
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Definition 59 Marginal Rate of Transformation (MRT/MRTS)310

Definition 60 Elasticity of Substitution311
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Definition 61 Profit Maximization312

Definition 62 Isoprofitline313
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4.4. Rationalizability314

Definition 63 Weak Axiom of Profit Maximization (WAPM)315
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Definition 64 Euler’s Law316
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Definition 65 Hotelling’s Lemma317

Definition 66 Law of Supply318

4.5. Cost Minimization Problem (CMP)319

Definition 67 Single-output Firm320
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Definition 68 Cost Minimization321
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5. General Equilibrium322

Definition 69 The Walrasian Model323

Definition 70 Walrasian Equilibrium324

Definition 71 Pareto Optimality / Pareto Efficiency325

36



Definition 72 Edgeworth Box326
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Definition 73 Walrasian Equilibrium and Pareto Optimality327
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Definition 74 First Welfare Theorem328

Definition 75 Second Welfare Theorem329
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Definition 76 Finding a Pareto Optimal Allocation Using Its Definition330
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